

Roll No. 10

--	--	--	--	--	--	--	--	--	--

UG (Full Time) End-Semester Examinations April/May 2024

EE 5691 – INTRODUCTION TO CONTROL SYSTEMS

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

Q.No	Questions	Marks
1.	Discuss various classification of systems	2
2.	Define transfer function and discuss its poles and zeros	2
3.	Define the type and order of a control system	2
4.	What is centroid and how is it derived?	2
5.	Define decade and octave range of frequency	2
6.	Define gain crossover frequency and phase margin	2
7.	How the imaginary roots are obtained from Routh-Hurwitz Criterion?	2
8.	Describe the difference between absolute and relative stability	2
9.	Explain the concept of state and state variables	2
10.	State the properties of state transition matrix	2

PART- B (5 x 13 = 65 Marks)

(Restrict to a maximum of 2 subdivisions)

Q.N o	Questions	Marks
11.	a) Find the overall gain C/ R for the signal flow graph shown in Fig11.	13
	<p>(Fig 11)</p>	
	OR	
	b) Convert the signal flow graph shown in Fig11 in to a block diagram and use block diagram reduction technique to find the overall gain C/R.	13
12.	a) Derive the step response of a II order underdamped system and therefrom obtain rise time, peak time, settling time and peak overshoot.	13
	OR	
	b) A unity feedback system has the loop transfer function $G(s) = k(s+3)/[(s(s+4)(s+5)(s^2+2s+2)]$. Sketch the Root Locus showing all the relevant points. Find the breakaway point and imaginary axis crossover point.	13

13.	a) Sketch the polar plot for a control system whose loop transfer function is $G(s) = k/[(s-1)(s+2)]$ for $k=1$ and 2 .	13
	OR	
14.	b) Sketch the Bode plots for a control system whose loop transfer function is $G(s) = 500(s+2)/[s(s+1)(s+5)(s+20)]$. Determine GM and PM.	13
15.	a) Determine the range of k over which the following characteristic polynomials belong to stable systems. 1. $s^3+6s^2+11s+k$ 2. $S^4+5s^3+9s^2+20s+k$	13
	OR	
15.	b) Sketch the Nyquist plot for a unity feedback system whose open loop transfer function is $G(s) = 20/[s^2(s+2)(s+4)]$. Examine the closed loop stability.	13
15.	a) A Closed loop system is described by the differential equation: $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 3y = 4u$ where u is the input and y is the output. Choosing proper state variables, determine a state model consisting of state equation and output equation.	13
	OR	
15.	b) For a control system having transfer function $C(s)/R(s) = 5/[s(s+1)(s+2)]$. Obtain the state equations and hence the state transition matrix. Also write the expression for the output $c(t)$ if the input $r(t) = u(t)$.	13

PART- C (1 x 15 = 15 Marks)
(Q. No 16 is Compulsory)

Q.No	Questions	Marks
16.	A proportional-derivative feedback control system has forward path t.f. $G(s) = 16/s(s+0.8)$ and feedback path t.f. $H(s) = 1+ks$. Determine the value of k such that the damping ratio is 0.5. With this value of k , obtain the rise time, overshoot, peak time and settling time.	15

